sha2_internal.cc 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081
  1. /*
  2. * FILE: sha2.c
  3. * AUTHOR: Aaron D. Gifford - http://www.aarongifford.com/
  4. *
  5. * Copyright (c) 2000-2001, Aaron D. Gifford
  6. * All rights reserved.
  7. *
  8. * Redistribution and use in source and binary forms, with or without
  9. * modification, are permitted provided that the following conditions
  10. * are met:
  11. * 1. Redistributions of source code must retain the above copyright
  12. * notice, this list of conditions and the following disclaimer.
  13. * 2. Redistributions in binary form must reproduce the above copyright
  14. * notice, this list of conditions and the following disclaimer in the
  15. * documentation and/or other materials provided with the distribution.
  16. * 3. Neither the name of the copyright holder nor the names of contributors
  17. * may be used to endorse or promote products derived from this software
  18. * without specific prior written permission.
  19. *
  20. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
  21. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  22. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  23. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
  24. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  25. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  26. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  27. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  28. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  29. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  30. * SUCH DAMAGE.
  31. *
  32. * $Id: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
  33. */
  34. #include <config.h>
  35. #include <string.h> /* memcpy()/memset() or bcopy()/bzero() */
  36. #include <assert.h> /* assert() */
  37. #include "sha2_internal.h"
  38. /*
  39. * ASSERT NOTE:
  40. * Some sanity checking code is included using assert(). On my FreeBSD
  41. * system, this additional code can be removed by compiling with NDEBUG
  42. * defined. Check your own systems manpage on assert() to see how to
  43. * compile WITHOUT the sanity checking code on your system.
  44. *
  45. * UNROLLED TRANSFORM LOOP NOTE:
  46. * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
  47. * loop version for the hash transform rounds (defined using macros
  48. * later in this file). Either define on the command line, for example:
  49. *
  50. * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
  51. *
  52. * or define below:
  53. *
  54. * #define SHA2_UNROLL_TRANSFORM
  55. *
  56. */
  57. /*** SHA-256/384/512 Machine Architecture Definitions *****************/
  58. /*
  59. * BYTE_ORDER NOTE:
  60. *
  61. * Please make sure that your system defines BYTE_ORDER. If your
  62. * architecture is little-endian, make sure it also defines
  63. * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
  64. * equivalent.
  65. *
  66. * If your system does not define the above, then you can do so by
  67. * hand like this:
  68. *
  69. * #define LITTLE_ENDIAN 1234
  70. * #define BIG_ENDIAN 4321
  71. *
  72. * And for little-endian machines, add:
  73. *
  74. * #define BYTE_ORDER LITTLE_ENDIAN
  75. *
  76. * Or for big-endian machines:
  77. *
  78. * #define BYTE_ORDER BIG_ENDIAN
  79. *
  80. * The FreeBSD machine this was written on defines BYTE_ORDER
  81. * appropriately by including <sys/types.h> (which in turn includes
  82. * <machine/endian.h> where the appropriate definitions are actually
  83. * made).
  84. */
  85. #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
  86. #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
  87. #endif
  88. /*
  89. * Define the followingsha2_* types to types of the correct length on
  90. * the native archtecture. Most BSD systems and Linux define u_intXX_t
  91. * types. Machines with very recent ANSI C headers, can use the
  92. * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
  93. * during compile or in the sha.h header file.
  94. *
  95. * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
  96. * will need to define these three typedefs below (and the appropriate
  97. * ones in sha.h too) by hand according to their system architecture.
  98. *
  99. * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
  100. * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
  101. */
  102. #ifdef SHA2_USE_INTTYPES_H
  103. typedef uint8_t sha2_byte; /* Exactly 1 byte */
  104. typedef uint32_t sha2_word32; /* Exactly 4 bytes */
  105. typedef uint64_t sha2_word64; /* Exactly 8 bytes */
  106. #else /* SHA2_USE_INTTYPES_H */
  107. typedef u_int8_t sha2_byte; /* Exactly 1 byte */
  108. typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
  109. typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
  110. #endif /* SHA2_USE_INTTYPES_H */
  111. /*** SHA-256/384/512 Various Length Definitions ***********************/
  112. /* NOTE: Most of these are in sha2.h */
  113. #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
  114. #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
  115. #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
  116. /*** ENDIAN REVERSAL MACROS *******************************************/
  117. #if BYTE_ORDER == LITTLE_ENDIAN
  118. #define REVERSE32(w,x) { \
  119. sha2_word32 tmp = (w); \
  120. tmp = (tmp >> 16) | (tmp << 16); \
  121. (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
  122. }
  123. #define REVERSE64(w,x) { \
  124. sha2_word64 tmp = (w); \
  125. tmp = (tmp >> 32) | (tmp << 32); \
  126. tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
  127. ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
  128. (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
  129. ((tmp & 0x0000ffff0000ffffULL) << 16); \
  130. }
  131. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  132. /*
  133. * Macro for incrementally adding the unsigned 64-bit integer n to the
  134. * unsigned 128-bit integer (represented using a two-element array of
  135. * 64-bit words):
  136. */
  137. #define ADDINC128(w,n) { \
  138. (w)[0] += (sha2_word64)(n); \
  139. if ((w)[0] < (n)) { \
  140. (w)[1]++; \
  141. } \
  142. }
  143. /*
  144. * Macros for copying blocks of memory and for zeroing out ranges
  145. * of memory. Using these macros makes it easy to switch from
  146. * using memset()/memcpy() and using bzero()/bcopy().
  147. *
  148. * Please define either SHA2_USE_MEMSET_MEMCPY or define
  149. * SHA2_USE_BZERO_BCOPY depending on which function set you
  150. * choose to use:
  151. */
  152. #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
  153. /* Default to memset()/memcpy() if no option is specified */
  154. #define SHA2_USE_MEMSET_MEMCPY 1
  155. #endif
  156. #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
  157. /* Abort with an error if BOTH options are defined */
  158. #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
  159. #endif
  160. #ifdef SHA2_USE_MEMSET_MEMCPY
  161. #define MEMSET_BZERO(p,l) memset((p), 0, (l))
  162. #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
  163. #endif
  164. #ifdef SHA2_USE_BZERO_BCOPY
  165. #define MEMSET_BZERO(p,l) bzero((p), (l))
  166. #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
  167. #endif
  168. /*** THE SIX LOGICAL FUNCTIONS ****************************************/
  169. /*
  170. * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
  171. *
  172. * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
  173. * S is a ROTATION) because the SHA-256/384/512 description document
  174. * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
  175. * same "backwards" definition.
  176. */
  177. /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
  178. #define R(b,x) ((x) >> (b))
  179. /* 32-bit Rotate-right (used in SHA-256): */
  180. #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
  181. /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
  182. #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
  183. /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
  184. #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  185. #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  186. /* Four of six logical functions used in SHA-256: */
  187. #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
  188. #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
  189. #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
  190. #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
  191. /* Four of six logical functions used in SHA-384 and SHA-512: */
  192. #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
  193. #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
  194. #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
  195. #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
  196. /*** INTERNAL FUNCTION PROTOTYPES *************************************/
  197. /* NOTE: These should not be accessed directly from outside this
  198. * library -- they are intended for private internal visibility/use
  199. * only.
  200. */
  201. static void SHA512_Last(SHA512_CTX*);
  202. static void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
  203. static void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
  204. /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
  205. /* Hash constant words K for SHA-256: */
  206. const static sha2_word32 K256[64] = {
  207. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  208. 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  209. 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  210. 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  211. 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  212. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  213. 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  214. 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  215. 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  216. 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  217. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  218. 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  219. 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  220. 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  221. 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  222. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  223. };
  224. /* Initial hash value H for SHA-256: */
  225. const static sha2_word32 sha256_initial_hash_value[8] = {
  226. 0x6a09e667UL,
  227. 0xbb67ae85UL,
  228. 0x3c6ef372UL,
  229. 0xa54ff53aUL,
  230. 0x510e527fUL,
  231. 0x9b05688cUL,
  232. 0x1f83d9abUL,
  233. 0x5be0cd19UL
  234. };
  235. /* Hash constant words K for SHA-384 and SHA-512: */
  236. const static sha2_word64 K512[80] = {
  237. 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
  238. 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  239. 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
  240. 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  241. 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
  242. 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  243. 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
  244. 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  245. 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
  246. 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  247. 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
  248. 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  249. 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
  250. 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  251. 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
  252. 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  253. 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
  254. 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  255. 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
  256. 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  257. 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
  258. 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  259. 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
  260. 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  261. 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
  262. 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  263. 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
  264. 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  265. 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
  266. 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  267. 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
  268. 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  269. 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
  270. 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  271. 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
  272. 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  273. 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
  274. 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  275. 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
  276. 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  277. };
  278. /* Initial hash value H for SHA-384 */
  279. const static sha2_word64 sha384_initial_hash_value[8] = {
  280. 0xcbbb9d5dc1059ed8ULL,
  281. 0x629a292a367cd507ULL,
  282. 0x9159015a3070dd17ULL,
  283. 0x152fecd8f70e5939ULL,
  284. 0x67332667ffc00b31ULL,
  285. 0x8eb44a8768581511ULL,
  286. 0xdb0c2e0d64f98fa7ULL,
  287. 0x47b5481dbefa4fa4ULL
  288. };
  289. /* Initial hash value H for SHA-512 */
  290. const static sha2_word64 sha512_initial_hash_value[8] = {
  291. 0x6a09e667f3bcc908ULL,
  292. 0xbb67ae8584caa73bULL,
  293. 0x3c6ef372fe94f82bULL,
  294. 0xa54ff53a5f1d36f1ULL,
  295. 0x510e527fade682d1ULL,
  296. 0x9b05688c2b3e6c1fULL,
  297. 0x1f83d9abfb41bd6bULL,
  298. 0x5be0cd19137e2179ULL
  299. };
  300. /*
  301. * Constant used by SHA256/384/512_End() functions for converting the
  302. * digest to a readable hexadecimal character string:
  303. */
  304. static const char *sha2_hex_digits = "0123456789abcdef";
  305. /*** SHA-256: *********************************************************/
  306. void SHA256_Init(SHA256_CTX* context) {
  307. if (context == (SHA256_CTX*)0) {
  308. return;
  309. }
  310. MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH);
  311. MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH);
  312. context->bitcount = 0;
  313. }
  314. #ifdef SHA2_UNROLL_TRANSFORM
  315. /* Unrolled SHA-256 round macros: */
  316. #if BYTE_ORDER == LITTLE_ENDIAN
  317. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  318. REVERSE32(*data++, W256[j]); \
  319. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  320. K256[j] + W256[j]; \
  321. (d) += T1; \
  322. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  323. j++
  324. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  325. #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
  326. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
  327. K256[j] + (W256[j] = *data++); \
  328. (d) += T1; \
  329. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  330. j++
  331. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  332. #define ROUND256(a,b,c,d,e,f,g,h) \
  333. s0 = W256[(j+1)&0x0f]; \
  334. s0 = sigma0_256(s0); \
  335. s1 = W256[(j+14)&0x0f]; \
  336. s1 = sigma1_256(s1); \
  337. T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
  338. (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
  339. (d) += T1; \
  340. (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
  341. j++
  342. static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  343. sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
  344. sha2_word32 T1, *W256;
  345. int j;
  346. W256 = (sha2_word32*)context->buffer;
  347. /* Initialize registers with the prev. intermediate value */
  348. a = context->state[0];
  349. b = context->state[1];
  350. c = context->state[2];
  351. d = context->state[3];
  352. e = context->state[4];
  353. f = context->state[5];
  354. g = context->state[6];
  355. h = context->state[7];
  356. j = 0;
  357. do {
  358. /* Rounds 0 to 15 (unrolled): */
  359. ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
  360. ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
  361. ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
  362. ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
  363. ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
  364. ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
  365. ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
  366. ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
  367. } while (j < 16);
  368. /* Now for the remaining rounds to 64: */
  369. do {
  370. ROUND256(a,b,c,d,e,f,g,h);
  371. ROUND256(h,a,b,c,d,e,f,g);
  372. ROUND256(g,h,a,b,c,d,e,f);
  373. ROUND256(f,g,h,a,b,c,d,e);
  374. ROUND256(e,f,g,h,a,b,c,d);
  375. ROUND256(d,e,f,g,h,a,b,c);
  376. ROUND256(c,d,e,f,g,h,a,b);
  377. ROUND256(b,c,d,e,f,g,h,a);
  378. } while (j < 64);
  379. /* Compute the current intermediate hash value */
  380. context->state[0] += a;
  381. context->state[1] += b;
  382. context->state[2] += c;
  383. context->state[3] += d;
  384. context->state[4] += e;
  385. context->state[5] += f;
  386. context->state[6] += g;
  387. context->state[7] += h;
  388. /* Clean up */
  389. a = b = c = d = e = f = g = h = T1 = 0;
  390. }
  391. #else /* SHA2_UNROLL_TRANSFORM */
  392. static void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
  393. sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
  394. sha2_word32 T1, T2, *W256;
  395. int j;
  396. W256 = (sha2_word32*)context->buffer;
  397. /* Initialize registers with the prev. intermediate value */
  398. a = context->state[0];
  399. b = context->state[1];
  400. c = context->state[2];
  401. d = context->state[3];
  402. e = context->state[4];
  403. f = context->state[5];
  404. g = context->state[6];
  405. h = context->state[7];
  406. j = 0;
  407. do {
  408. #if BYTE_ORDER == LITTLE_ENDIAN
  409. /* Copy data while converting to host byte order */
  410. REVERSE32(*data++,W256[j]);
  411. /* Apply the SHA-256 compression function to update a..h */
  412. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
  413. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  414. /* Apply the SHA-256 compression function to update a..h with copy */
  415. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
  416. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  417. T2 = Sigma0_256(a) + Maj(a, b, c);
  418. h = g;
  419. g = f;
  420. f = e;
  421. e = d + T1;
  422. d = c;
  423. c = b;
  424. b = a;
  425. a = T1 + T2;
  426. j++;
  427. } while (j < 16);
  428. do {
  429. /* Part of the message block expansion: */
  430. s0 = W256[(j+1)&0x0f];
  431. s0 = sigma0_256(s0);
  432. s1 = W256[(j+14)&0x0f];
  433. s1 = sigma1_256(s1);
  434. /* Apply the SHA-256 compression function to update a..h */
  435. T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
  436. (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
  437. T2 = Sigma0_256(a) + Maj(a, b, c);
  438. h = g;
  439. g = f;
  440. f = e;
  441. e = d + T1;
  442. d = c;
  443. c = b;
  444. b = a;
  445. a = T1 + T2;
  446. j++;
  447. } while (j < 64);
  448. /* Compute the current intermediate hash value */
  449. context->state[0] += a;
  450. context->state[1] += b;
  451. context->state[2] += c;
  452. context->state[3] += d;
  453. context->state[4] += e;
  454. context->state[5] += f;
  455. context->state[6] += g;
  456. context->state[7] += h;
  457. /* Clean up */
  458. a = b = c = d = e = f = g = h = T1 = T2 = 0;
  459. }
  460. #endif /* SHA2_UNROLL_TRANSFORM */
  461. void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
  462. unsigned int freespace, usedspace;
  463. if (len == 0) {
  464. /* Calling with no data is valid - we do nothing */
  465. return;
  466. }
  467. /* Sanity check: */
  468. assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
  469. usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  470. if (usedspace > 0) {
  471. /* Calculate how much free space is available in the buffer */
  472. freespace = SHA256_BLOCK_LENGTH - usedspace;
  473. if (len >= freespace) {
  474. /* Fill the buffer completely and process it */
  475. MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
  476. context->bitcount += freespace << 3;
  477. len -= freespace;
  478. data += freespace;
  479. SHA256_Transform(context, (sha2_word32*)context->buffer);
  480. } else {
  481. /* The buffer is not yet full */
  482. MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
  483. context->bitcount += len << 3;
  484. /* Clean up: */
  485. usedspace = freespace = 0;
  486. return;
  487. }
  488. }
  489. while (len >= SHA256_BLOCK_LENGTH) {
  490. /* Process as many complete blocks as we can */
  491. sha2_byte buffer[SHA256_BLOCK_LENGTH];
  492. MEMCPY_BCOPY(buffer, data, SHA256_BLOCK_LENGTH);
  493. SHA256_Transform(context, (sha2_word32*)buffer);
  494. context->bitcount += SHA256_BLOCK_LENGTH << 3;
  495. len -= SHA256_BLOCK_LENGTH;
  496. data += SHA256_BLOCK_LENGTH;
  497. }
  498. if (len > 0) {
  499. /* There's left-overs, so save 'em */
  500. MEMCPY_BCOPY(context->buffer, data, len);
  501. context->bitcount += len << 3;
  502. }
  503. /* Clean up: */
  504. usedspace = freespace = 0;
  505. }
  506. void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
  507. sha2_word32 *d = (sha2_word32*)digest;
  508. unsigned int usedspace;
  509. /* Sanity check: */
  510. assert(context != (SHA256_CTX*)0);
  511. /* If no digest buffer is passed, we don't bother doing this: */
  512. if (digest != (sha2_byte*)0) {
  513. usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
  514. #if BYTE_ORDER == LITTLE_ENDIAN
  515. /* Convert FROM host byte order */
  516. REVERSE64(context->bitcount,context->bitcount);
  517. #endif
  518. if (usedspace > 0) {
  519. /* Begin padding with a 1 bit: */
  520. context->buffer[usedspace++] = 0x80;
  521. if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
  522. /* Set-up for the last transform: */
  523. MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
  524. } else {
  525. if (usedspace < SHA256_BLOCK_LENGTH) {
  526. MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
  527. }
  528. /* Do second-to-last transform: */
  529. SHA256_Transform(context, (sha2_word32*)context->buffer);
  530. /* And set-up for the last transform: */
  531. MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  532. }
  533. } else {
  534. /* Set-up for the last transform: */
  535. MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
  536. /* Begin padding with a 1 bit: */
  537. *context->buffer = 0x80;
  538. }
  539. /* Set the bit count: */
  540. union {
  541. sha2_byte* c;
  542. sha2_word64* l;
  543. } bitcount;
  544. bitcount.c = &context->buffer[SHA256_SHORT_BLOCK_LENGTH];
  545. *(bitcount.l) = context->bitcount;
  546. /* Final transform: */
  547. SHA256_Transform(context, (sha2_word32*)context->buffer);
  548. #if BYTE_ORDER == LITTLE_ENDIAN
  549. {
  550. /* Convert TO host byte order */
  551. int j;
  552. for (j = 0; j < 8; j++) {
  553. REVERSE32(context->state[j],context->state[j]);
  554. *d++ = context->state[j];
  555. }
  556. }
  557. #else
  558. MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH);
  559. #endif
  560. }
  561. /* Clean up state data: */
  562. MEMSET_BZERO(context, sizeof(*context));
  563. usedspace = 0;
  564. }
  565. char *SHA256_End(SHA256_CTX* context, char buffer[]) {
  566. sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
  567. int i;
  568. /* Sanity check: */
  569. assert(context != (SHA256_CTX*)0);
  570. if (buffer != (char*)0) {
  571. SHA256_Final(digest, context);
  572. for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
  573. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  574. *buffer++ = sha2_hex_digits[*d & 0x0f];
  575. d++;
  576. }
  577. *buffer = (char)0;
  578. } else {
  579. MEMSET_BZERO(context, sizeof(*context));
  580. }
  581. MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH);
  582. return buffer;
  583. }
  584. char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
  585. SHA256_CTX context;
  586. SHA256_Init(&context);
  587. SHA256_Update(&context, data, len);
  588. return SHA256_End(&context, digest);
  589. }
  590. /*** SHA-512: *********************************************************/
  591. void SHA512_Init(SHA512_CTX* context) {
  592. if (context == (SHA512_CTX*)0) {
  593. return;
  594. }
  595. MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH);
  596. MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH);
  597. context->bitcount[0] = context->bitcount[1] = 0;
  598. }
  599. #ifdef SHA2_UNROLL_TRANSFORM
  600. /* Unrolled SHA-512 round macros: */
  601. #if BYTE_ORDER == LITTLE_ENDIAN
  602. #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
  603. REVERSE64(*data++, W512[j]); \
  604. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  605. K512[j] + W512[j]; \
  606. (d) += T1, \
  607. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
  608. j++
  609. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  610. #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
  611. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
  612. K512[j] + (W512[j] = *data++); \
  613. (d) += T1; \
  614. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  615. j++
  616. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  617. #define ROUND512(a,b,c,d,e,f,g,h) \
  618. s0 = W512[(j+1)&0x0f]; \
  619. s0 = sigma0_512(s0); \
  620. s1 = W512[(j+14)&0x0f]; \
  621. s1 = sigma1_512(s1); \
  622. T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
  623. (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
  624. (d) += T1; \
  625. (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
  626. j++
  627. static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  628. sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
  629. sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
  630. int j;
  631. /* Initialize registers with the prev. intermediate value */
  632. a = context->state[0];
  633. b = context->state[1];
  634. c = context->state[2];
  635. d = context->state[3];
  636. e = context->state[4];
  637. f = context->state[5];
  638. g = context->state[6];
  639. h = context->state[7];
  640. j = 0;
  641. do {
  642. ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
  643. ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
  644. ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
  645. ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
  646. ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
  647. ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
  648. ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
  649. ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
  650. } while (j < 16);
  651. /* Now for the remaining rounds up to 79: */
  652. do {
  653. ROUND512(a,b,c,d,e,f,g,h);
  654. ROUND512(h,a,b,c,d,e,f,g);
  655. ROUND512(g,h,a,b,c,d,e,f);
  656. ROUND512(f,g,h,a,b,c,d,e);
  657. ROUND512(e,f,g,h,a,b,c,d);
  658. ROUND512(d,e,f,g,h,a,b,c);
  659. ROUND512(c,d,e,f,g,h,a,b);
  660. ROUND512(b,c,d,e,f,g,h,a);
  661. } while (j < 80);
  662. /* Compute the current intermediate hash value */
  663. context->state[0] += a;
  664. context->state[1] += b;
  665. context->state[2] += c;
  666. context->state[3] += d;
  667. context->state[4] += e;
  668. context->state[5] += f;
  669. context->state[6] += g;
  670. context->state[7] += h;
  671. /* Clean up */
  672. a = b = c = d = e = f = g = h = T1 = 0;
  673. }
  674. #else /* SHA2_UNROLL_TRANSFORM */
  675. static void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
  676. sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
  677. sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
  678. int j;
  679. /* Initialize registers with the prev. intermediate value */
  680. a = context->state[0];
  681. b = context->state[1];
  682. c = context->state[2];
  683. d = context->state[3];
  684. e = context->state[4];
  685. f = context->state[5];
  686. g = context->state[6];
  687. h = context->state[7];
  688. j = 0;
  689. do {
  690. #if BYTE_ORDER == LITTLE_ENDIAN
  691. /* Convert TO host byte order */
  692. REVERSE64(*data++, W512[j]);
  693. /* Apply the SHA-512 compression function to update a..h */
  694. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
  695. #else /* BYTE_ORDER == LITTLE_ENDIAN */
  696. /* Apply the SHA-512 compression function to update a..h with copy */
  697. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
  698. #endif /* BYTE_ORDER == LITTLE_ENDIAN */
  699. T2 = Sigma0_512(a) + Maj(a, b, c);
  700. h = g;
  701. g = f;
  702. f = e;
  703. e = d + T1;
  704. d = c;
  705. c = b;
  706. b = a;
  707. a = T1 + T2;
  708. j++;
  709. } while (j < 16);
  710. do {
  711. /* Part of the message block expansion: */
  712. s0 = W512[(j+1)&0x0f];
  713. s0 = sigma0_512(s0);
  714. s1 = W512[(j+14)&0x0f];
  715. s1 = sigma1_512(s1);
  716. /* Apply the SHA-512 compression function to update a..h */
  717. T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
  718. (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
  719. T2 = Sigma0_512(a) + Maj(a, b, c);
  720. h = g;
  721. g = f;
  722. f = e;
  723. e = d + T1;
  724. d = c;
  725. c = b;
  726. b = a;
  727. a = T1 + T2;
  728. j++;
  729. } while (j < 80);
  730. /* Compute the current intermediate hash value */
  731. context->state[0] += a;
  732. context->state[1] += b;
  733. context->state[2] += c;
  734. context->state[3] += d;
  735. context->state[4] += e;
  736. context->state[5] += f;
  737. context->state[6] += g;
  738. context->state[7] += h;
  739. /* Clean up */
  740. a = b = c = d = e = f = g = h = T1 = T2 = 0;
  741. }
  742. #endif /* SHA2_UNROLL_TRANSFORM */
  743. void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
  744. unsigned int freespace, usedspace;
  745. if (len == 0) {
  746. /* Calling with no data is valid - we do nothing */
  747. return;
  748. }
  749. /* Sanity check: */
  750. assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
  751. usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  752. if (usedspace > 0) {
  753. /* Calculate how much free space is available in the buffer */
  754. freespace = SHA512_BLOCK_LENGTH - usedspace;
  755. if (len >= freespace) {
  756. /* Fill the buffer completely and process it */
  757. MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace);
  758. ADDINC128(context->bitcount, freespace << 3);
  759. len -= freespace;
  760. data += freespace;
  761. SHA512_Transform(context, (sha2_word64*)context->buffer);
  762. } else {
  763. /* The buffer is not yet full */
  764. MEMCPY_BCOPY(&context->buffer[usedspace], data, len);
  765. ADDINC128(context->bitcount, len << 3);
  766. /* Clean up: */
  767. usedspace = freespace = 0;
  768. return;
  769. }
  770. }
  771. while (len >= SHA512_BLOCK_LENGTH) {
  772. /* Process as many complete blocks as we can */
  773. sha2_byte buffer[SHA512_BLOCK_LENGTH];
  774. MEMCPY_BCOPY(buffer, data, SHA512_BLOCK_LENGTH);
  775. SHA512_Transform(context, (sha2_word64*)buffer);
  776. ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
  777. len -= SHA512_BLOCK_LENGTH;
  778. data += SHA512_BLOCK_LENGTH;
  779. }
  780. if (len > 0) {
  781. /* There's left-overs, so save 'em */
  782. MEMCPY_BCOPY(context->buffer, data, len);
  783. ADDINC128(context->bitcount, len << 3);
  784. }
  785. /* Clean up: */
  786. usedspace = freespace = 0;
  787. }
  788. static void SHA512_Last(SHA512_CTX* context) {
  789. unsigned int usedspace;
  790. usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
  791. #if BYTE_ORDER == LITTLE_ENDIAN
  792. /* Convert FROM host byte order */
  793. REVERSE64(context->bitcount[0],context->bitcount[0]);
  794. REVERSE64(context->bitcount[1],context->bitcount[1]);
  795. #endif
  796. if (usedspace > 0) {
  797. /* Begin padding with a 1 bit: */
  798. context->buffer[usedspace++] = 0x80;
  799. if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
  800. /* Set-up for the last transform: */
  801. MEMSET_BZERO(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
  802. } else {
  803. if (usedspace < SHA512_BLOCK_LENGTH) {
  804. MEMSET_BZERO(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
  805. }
  806. /* Do second-to-last transform: */
  807. SHA512_Transform(context, (sha2_word64*)context->buffer);
  808. /* And set-up for the last transform: */
  809. MEMSET_BZERO(context->buffer, SHA512_BLOCK_LENGTH - 2);
  810. }
  811. } else {
  812. /* Prepare for final transform: */
  813. MEMSET_BZERO(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
  814. /* Begin padding with a 1 bit: */
  815. *context->buffer = 0x80;
  816. }
  817. /* Store the length of input data (in bits): */
  818. union {
  819. sha2_byte* c;
  820. sha2_word64* l;
  821. } bitcount;
  822. bitcount.c = &context->buffer[SHA512_SHORT_BLOCK_LENGTH];
  823. bitcount.l[0] = context->bitcount[1];
  824. bitcount.l[1] = context->bitcount[0];
  825. /* Final transform: */
  826. SHA512_Transform(context, (sha2_word64*)context->buffer);
  827. }
  828. void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
  829. sha2_word64 *d = (sha2_word64*)digest;
  830. /* Sanity check: */
  831. assert(context != (SHA512_CTX*)0);
  832. /* If no digest buffer is passed, we don't bother doing this: */
  833. if (digest != (sha2_byte*)0) {
  834. SHA512_Last(context);
  835. /* Save the hash data for output: */
  836. #if BYTE_ORDER == LITTLE_ENDIAN
  837. {
  838. /* Convert TO host byte order */
  839. int j;
  840. for (j = 0; j < 8; j++) {
  841. REVERSE64(context->state[j],context->state[j]);
  842. *d++ = context->state[j];
  843. }
  844. }
  845. #else
  846. MEMCPY_BCOPY(d, context->state, SHA512_DIGEST_LENGTH);
  847. #endif
  848. }
  849. /* Zero out state data */
  850. MEMSET_BZERO(context, sizeof(*context));
  851. }
  852. char *SHA512_End(SHA512_CTX* context, char buffer[]) {
  853. sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
  854. int i;
  855. /* Sanity check: */
  856. assert(context != (SHA512_CTX*)0);
  857. if (buffer != (char*)0) {
  858. SHA512_Final(digest, context);
  859. for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
  860. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  861. *buffer++ = sha2_hex_digits[*d & 0x0f];
  862. d++;
  863. }
  864. *buffer = (char)0;
  865. } else {
  866. MEMSET_BZERO(context, sizeof(*context));
  867. }
  868. MEMSET_BZERO(digest, SHA512_DIGEST_LENGTH);
  869. return buffer;
  870. }
  871. char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
  872. SHA512_CTX context;
  873. SHA512_Init(&context);
  874. SHA512_Update(&context, data, len);
  875. return SHA512_End(&context, digest);
  876. }
  877. /*** SHA-384: *********************************************************/
  878. void SHA384_Init(SHA384_CTX* context) {
  879. if (context == (SHA384_CTX*)0) {
  880. return;
  881. }
  882. MEMCPY_BCOPY(context->state, sha384_initial_hash_value, SHA512_DIGEST_LENGTH);
  883. MEMSET_BZERO(context->buffer, SHA384_BLOCK_LENGTH);
  884. context->bitcount[0] = context->bitcount[1] = 0;
  885. }
  886. void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
  887. SHA512_Update((SHA512_CTX*)context, data, len);
  888. }
  889. void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
  890. sha2_word64 *d = (sha2_word64*)digest;
  891. /* Sanity check: */
  892. assert(context != (SHA384_CTX*)0);
  893. /* If no digest buffer is passed, we don't bother doing this: */
  894. if (digest != (sha2_byte*)0) {
  895. SHA512_Last((SHA512_CTX*)context);
  896. /* Save the hash data for output: */
  897. #if BYTE_ORDER == LITTLE_ENDIAN
  898. {
  899. /* Convert TO host byte order */
  900. int j;
  901. for (j = 0; j < 6; j++) {
  902. REVERSE64(context->state[j],context->state[j]);
  903. *d++ = context->state[j];
  904. }
  905. }
  906. #else
  907. MEMCPY_BCOPY(d, context->state, SHA384_DIGEST_LENGTH);
  908. #endif
  909. }
  910. /* Zero out state data */
  911. MEMSET_BZERO(context, sizeof(*context));
  912. }
  913. char *SHA384_End(SHA384_CTX* context, char buffer[]) {
  914. sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
  915. int i;
  916. /* Sanity check: */
  917. assert(context != (SHA384_CTX*)0);
  918. if (buffer != (char*)0) {
  919. SHA384_Final(digest, context);
  920. for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
  921. *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
  922. *buffer++ = sha2_hex_digits[*d & 0x0f];
  923. d++;
  924. }
  925. *buffer = (char)0;
  926. } else {
  927. MEMSET_BZERO(context, sizeof(*context));
  928. }
  929. MEMSET_BZERO(digest, SHA384_DIGEST_LENGTH);
  930. return buffer;
  931. }
  932. char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
  933. SHA384_CTX context;
  934. SHA384_Init(&context);
  935. SHA384_Update(&context, data, len);
  936. return SHA384_End(&context, digest);
  937. }